a^2+15=2a^2-16a

Simple and best practice solution for a^2+15=2a^2-16a equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+15=2a^2-16a equation:



a^2+15=2a^2-16a
We move all terms to the left:
a^2+15-(2a^2-16a)=0
We get rid of parentheses
a^2-2a^2+16a+15=0
We add all the numbers together, and all the variables
-1a^2+16a+15=0
a = -1; b = 16; c = +15;
Δ = b2-4ac
Δ = 162-4·(-1)·15
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{79}}{2*-1}=\frac{-16-2\sqrt{79}}{-2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{79}}{2*-1}=\frac{-16+2\sqrt{79}}{-2} $

See similar equations:

| 2x+7/4=16 | | 11k-4=-15 | | -2x+30=-4 | | -6k–3k=27 | | 25-19=2(x-9) | | 16=3x+11 | | 5u+1=-14 | | .-6k–3k=27 | | c^2+12c+16=0 | | 15x+9=11x+13 | | -2x+30=8x | | 7q-6=-20 | | 3x-5x(x+1)=2 | | 6x+27°+7x-9°=96° | | x*7-6=25 | | 4=6v+12 | | 7^2n=-8-18n | | v^2=2v-63=0 | | d^2-2d-3=0 | | 2a-8a=-3(1-5a)+4 | | 2k^2+3k-1=0 | | 1,30x+5.20=18.20 | | 5x−12=−3x+52 | | 4x+5=-x-15 | | .4(5-2x)=8+.2x | | 5(x-2)=7× | | 7h-19=2 | | 5x−12=−3x+525 | | 9q-9=39 | | 5x^2-26x+6=0 | | Y+2/2+y+5/4=6 | | n2=5 |

Equations solver categories